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Abstract. Using an interfacial potential approach we study capillary condensation within
an infinitely long rectangular fissure in an otherwise planar surface. We demonstrate
how the groove fills sharply, but continuously, with the wetting liquid as the chemical
potential and temperature are varied. This is contrasted to the situation for an infinitely
deep slit, where the transition is first order.

1. Introduction

Although the wetting transition on planar substrates is well understood (Dietrich 1988,
Charvolin et al 1990), much less 8 known for situations where the substrate geometry
is moye complicated. Therefore in this paper we study the shape of the liguid profile
within a wetting geometry around a simple substrate inhomogeneity, an infinitely long
rectangular fissure in an otherwise planar surface. We demonstrate how the groove
fills sharply, but continuously, with the wetting liquid as the chemical potential and
temperature are varied. This is in contrast to the situation for an infinitely deep
groove when the capillary condensation transition is first order (Evans 1990).

The interface potential we shall employ includes terms resulting from the surface
tension of the interface, the chemical potential difference between liquid and gas
and fluid-fluid and fluid—substrate interactions of the non-retarded van der Waals
form. It can be derived by minimizing a density functional expression for the grand
canonical potential within the sharp kink approximation, that is within the subspace
of piecewise constant density proftles (Dietrich 1988).

In section 2 we show how the interface free energy can be minimized in coordi-
nates appropriate to the slit geometry to give a differential equation for the height
of the interface above the substrate. This can be solved numerically and the results
are presented in section 3 as a function of the aspect ratio of the groove and the
thermodynamic parameters. Comparison is made to a slit of infinite depth in section
4. Scction 5 provides a conclusion in which the results are summarized and related
to previous work. A discussion is given of the validity of the interface potential
approach.

2, Interface potential approach for a rectangular groove

Our aim is to study the profile of the wetting layer in a rectangular groove of finite
width and depth, but infinite length, embedded in a plane, as shown in figure 1. The
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function I, which defines the substrate surface is a step function

_ if |lz| 2 DJ2
D=2 wrzop ®

Hence D is the slit width and ¢ the ratio of its depth to its width.
Gas

= L

Liquid

qD

D

Figure 1. Rectangular groove of width D and depth ¢D. The crigin is chosen to be at
ihe ievei of the piane, at an equai distance from each edge of the weil. The z and y
axes lie in the plane perpendicular and parallel to the groove respectively.

The substrate is immersed in a fluid close to two-phase coexistence at a reduced
temperature t = (7. — T)/T,., where T, is the temperature of the bulk critical
point. The chemical potential, relative to its value at two-phase coexistence, Ay,

15 chogen such that the eas nhasge is nreferred, The substrate—fluid interaction is
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defined so that the substrate attracts the fluid atoms. Hence a layer of liquid forms
on the substrate. The liquid-gas interface can either follow the contours of the well,
a situation preferred by the chemical potential contribution to the free energy, or
ignore the well to minimize the interfacial area and the associated surface tension.
We study the transition between these states as a function of Ay, ¢ and g.

We work within the approximation that there i a sharp interface at a distance {(r)
from the substrate surface. One can reasonably assume that the interface position
depends only on the = coordinate, I(r) = [(x), because the system is invariant with
respect to translations along the y axis (see figure 1), In terms of I(z) the interfacial
free energy per unit length along the slit is taken to be (Dietrich 1988)

n[[z(m)}=f°° 1+ (;”) + AL [z) ~ L(2)] } de + wli(z)). @ -

-0

The first term is the free energy of the interface itself—the surface area of the
interface multiplied by the liquid—gas surface tension, o. The second contribution
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to the free energy results from absorbing a given volume of the thermodynamically
unfavourable liquid phase. The difference in number densities between the two phases
has been subsumed into the chemical potential

Afi = (m) = ng)Ap. )

The final term models the interatomic interactions. In the case where both fluid-
fluid and fluid-substrate interaction potentials are of the non-retarded van der Waals
form, 1/r5, this can be written as

wll(z)] = -1-%&] [b t —I——dr'dr )]
gas Jsubstrate

{r—7" |6

where A is the Hamaker constant. The integral over the substrate can be carried out
analytically for a rectangular groove giving

u[z(x)]zf: fI; V(z,2)dzdz ©)
where
Ve y=—24{ L4 [ (ex 2) - (=22}
L2 a0\ < ) \ < /1
with
f(s,2) = g(s,24+ qD) — g(s, 2} Q)
and

—ulv? — 2yt — 29t
g(u!v) - u3(u2 + 02)1/21,3 * (8)

The last term in equation (6) is clearly due to the presence of the well. For a planar
substrate, g — 0, V'(x, z) reduces as expected to the potential of a single wall

2A

L2
28

‘/p!z_lm_t:(z) =- (9)

Note that we require a positive Hamaker constant to correspond to the case where a
liquid layer forms upon the substrate.

Minimization of the functional (2) with respect to [{(z) leads to the Euler-
Lagrange equation

2t 1 ain?]®?
e R [1+ (EE)] {V(z,i(z)) + Afi} = 0. (10

The Hamaker constant A, the number density difference An = n) — n,, and
the interfacial tension o all vanish at the critical point. We adopt the customary
power-law temperature dependence

o ~ oyt (11)
An ~ Angyt? (12)
A~ AgtP. (13)
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We will take the three-dimensional values for the exponents, u = 1.264 and 3 =
0.328 (Fisher and Chen 1985).

The parameters oy, Ang and A, are material dependent. For a typical liquid—gas
system, sulphur hexafluoride adsorbed on silica, Ag ~4 x 10722 J, g, >~ 0.05 J m~2
and Ang ~ 102 m~2 (Moldover 1985). The qualitative behaviour of the differential
equation (10) is not affected in any radical manner by the choice of the amplitudes
o, and Ang, as we will see below.

It is convenient to introduce the scaled variables

L=i/D (14)

X ==z/D. (15)

The differential equation (10) then becomes

3/2
dzr 1 dL\*
X " ll +(1%) l Vbt aiu=0 @9
where we have defined the coefficients
¢, = Ay/o, D?
e; = DAny/oy. (17)

The substrate potential is now given by

V(X,L):—Z{fla—+%[f(X+—;—,L)—f(X—%,L)]} (18)

with
f(s,Ly=g(s,L+q)—g(s,L). (19)

The function g(u,v) remains as given in equation (8).

The profiles L{X) of the gas-liquid interface are the solutions of the differen-
tial equation (16) subject to two boundary conditions. For a planar substrate L is
independent of X and we require that far away from the cleft

dL ]

— =0. (20)
[dX 1X |21
By symmetry a second boundary condition is
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0.4

Lix=0)

Figure 2. Reduced thickness L of the liquid layer at X = 0 against the chemical
potential difference A p for a square well, g = 1. The abscissa unit is 10~2° J. The
parameter values are t = 0.005, ¢; = 3 x 108, ¢3 = 1022 J-1,

3. Numerical results

The first question we want to address is: when will the well fill as coexistence is
approached? A natural measure of the coverage is the thickness of the liquid film
in the middle of the well L, = L(X = 0). To construct the curve L, (Au) we
solved the differential equation (16) with a variable stepsize, fourth-order Runge—
Kutta method. For low coverage the variable L{X) changes rapidly near the edges
of the well, X = £1/2. It is the necessity of obtaining an accurate profile in this
treacherous corner region that renders the adaptive stepsize necessary. The general
procedure is as follows. We fix L,, and, for a given Ay, calculate a profile that
satisfies the equation (21). We then tune the parameter Ap until the profile satisfies
the boundary condition (20). The tuning of Ay for low coverage within the groove

is quite demanding, while for high coverage it is much quicker.
A t\mlr'a'l result of the numerical caleulations for the sroove is shown in fisure 2
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We ﬁnd that the curve Ly(Apu), albeit very steep at the transition from an empty to
a full slit, is continuous and single-valued. The planar thickness far from the groove,
which follows immediately from equation (10),

Lplanar —~

planar 1/3
l 1 ( 2A ) @)

D =5 AnAp

varies very little in the crossover region. The thickness of the thin film forming on
the walls of the well is of order of the planar thickness. If Ay is larger than the
crossover value, then L, ~ LPlevar _ oD When Au - 0, the expected behaviour
b, & LPanaT o (A )~ ifs is recovered.

We worked within the interval 10~* <10 ’Iypical values for the width of
the slit were 2.5 x 1072 < D € 5 x 10~7 m. For a fixed reduced temperature ¢, and
a fixed depth to width factor g, the shape of Ly(Au) depends on the ratio

e _ D3An,

o a, (23)
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where ¢, and ¢, are the cocflicients appearing in the differential equation (16). The
larger the ratio c,/c;, the steeper the jump in L,(Au). The jump becomes less
pronounced for smaller values of the reduced temperature i.

For a fixed reduced temperature t, and a fixed ratio c,/c,, the jump is sharper
for a larger ¢. In the limit ¢ — oo the change in coverage must become discontinuous
as confirmed by figure 3.

0.3 y T T T T T T T T

Llx=01

-1}

Ay

Figure 3. Reduced thickness L of the liquid layer at X=0 against the chemical potential
difference Ay for an infinitely deep groove, ¢ — co. The abscissa unit is 10—2% J. The
parameter values are ¢ = 0.005, 3 =3 X 1078, ¢z = 1022 -1,

As the position of the jump is well defined, it is possible to construct a phase
diagram in the (t,Ap) plane. This is shown in figure 4. The separatrix indicates
when the liquid condenses in the groove.

LL] T T T T T T T T T

-

35 F b

£l Empty groove

25

ap

20

15

Full groave
10 4

Figure 4 Ay against ¢ phase diagram for capillary condensation in a square groove,
¢ = 1. The ordinate unit is 1025 J, The scparatrix gives the value, (¢, Ap), at
which the liquid condensate fills the groove. The parameter values are c; = 10~7 and
c; =5.5x 102 -1
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In addition, we have investigated the behaviour of L as a function of ¢, rather
than Ap. We find that the curve L (t) is similar to L,(Apu). As t increases, L,
jumps from a low coverage to a high coverage. Again the curve is continuous and
single-valued. For completeness we have checked how L, behaves as ¢ is varied, for
fixed Au and £. We find that L, increases linearly as g decreases as expected when
the interface is bound to the subsirate.

We have also evaluated the free energy Q; given by equation (2) as a function

of _/}.u Th this end we inserted the nrofiles that satisfy the Fuler—Laoranse equation

L R ERuwa bwe ALRIIVD LRI OMRLASAY LERT LAV TAsR pRdalipte A SO LILSIR

back into the free energy functional (2) and used the extended Simpson rule to
evaluate the integrals.

The result of the integration is displayed in figure 5, where the free energy per
unit length of the groove (calculated relative to the background contribution from the
planar substrate) is plotted against Au. The groove free energy exhibits a shoulder
corresponding to the crossover region where the groove fills. At the shoulder its
derivative, which is a measure of the coverage, undergoes a rapid change. However,
as far as we can tell from our numerical data, there is no singularity.

6 Y T T T T = T T T

Fiours §, Free snerov ner unit hanoth of the dit fealculated relative to the ha.r-'l.m;nnpd

ARUTT ihf P wian i hasiudiaiill

contribution from the planar substrate) as a [uncnon of the chemical potential dl!ference
Ap for a square groove, g = 1. The abscissa unit is 10~2% J and the ordinate unit is
10~% J m~!. The parameter values are t = 0.005, c; = 3 x 10~%, c; = 10?3 J=1.

4. An infinitely deep groove

It is of interest to compare the numerical results presented in section 3 to those for
an infinitely deep groove, ¢ — oo (Evans 1990). We consider two parallel plates at a
distance D from each other. When the plates are coated by a liquid film of thickness
I, the interfacial free energy per unit area is

fo = 2Vi(1) + 2A41 + 20. (24)

where
A

W) = 7+ e

(25)
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The equilibrium thickness is given by
iidl} + A =0. (26)
When the slit is filled with condensate, the interfacial free energy per unit area is
fs=AaD. 27N
Hence the value of Apu at which the transition occurs is

20 + 2VI(I)
Ap = ———>—=

“= An(D=2)) (28)
where [ satisfies equation (26). For a wide slit, where V;({) can be approximated by
the first term in equation (25), (28) reduces to (Derjaguin 1940)

20

An= b3y

(29)

The effect of long-range surface forces is apparent when is compared with the macro-

scopic Kelvin equation
20

AB= DD

(30)

obtained by balancing the surface tension and the chemical potential contributions to
the free energy.

The transition from a system of two plates coated by two separate liquid layers
and a completely filled slit is first order. This can be evidenced by comparing the
derivatives of fg and ff at the transition. This is the most striking difference from
the results for the finite groove presented in section 3 where the filling transition was
found to be abrupt but continuous. The value of Ay at which the transition occurs
is given to within 1% by the modified Kelvin equation (29), for ¢ 2 1.

5, Discussion

We have used an interface potential approach to study capillary condensation within
an infinitely long rectangular groove in an otherwise planar substrate. From the
results for an infinitely deep groove, section 4, a first-order jump from a low to a
high coverage, as coexistence is approached, might have been expected. This would
have been signalled by the L, against Ap diagram displaying a loop or capillary
spinodal (Evans et al 1986).

However, our numerical calculations show that the crossover from a low to a
high adsorption is continuous. The transition becomes discontinuous only in the Limit
g — co. The position of the crossover is well approximated by the modified Kelvin
equation for g > 1.

Similar results have been obtained by Robbins et al (1991) for a regular array of
grooves with q < 1, for a parabolic groove (Darbellay, unpublished) and for a corner
geometry (Cheng and Cole 1990). It is worth pointing out that in a study of capillary
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condensation between neighbouring spheres (Dobbs et al 1991) the interfacial poten-
tial approach did predict a first-order transition giving evidence that the lack of such
a transition is not an artifact of the method itself.

The groove is a one-dimensional system. Hence, even if the transition is first
order it will be rounded by an amount ~ exp{—aqD?/kT) where cqD? estimates
the energy needed to form domain walls between lengths of full and empty slit
(Privman and Fisher 1983). The rounding we observed did not obey this functional
iorm. Indeed, a mean-iield theoiy is not expecied to predict finite-size rounding.

The interface potential approach itself, although it is the most flexible possibility
extant for complicated substrate geometries, must be treated with circumspection.
Apart from being a mean ficld approximation based on density functional theory it
relies on a sharp kink approximation for the interface and the replacing of a non-
local integral by a local surface tension (Napi6rkowski and Dietrich 1992). The latter
approximation is known to lead to errors in the tails of the density profiles for a
corner substrate (Napiorkowski et al 1991).
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