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AbstncL Using an interfacial potential appmach we study capillaly condensation within 
an infinitely long rectangular 6ssure in an othenvise planar surface. Nk demonstrate 
how the groove 6lls sharply, but continuously, with h e  wetting Liquid BS the hemical 
potential and temperature are varied. This is mnlrasted 10 the situation for an infinitely 
deep slit, where the transition is E m  order. 

1. Introduction 

Although the wetting transition on planar substrates is well understood (Dietrich 1988, 
Charvolin el a1 1990), much less is hown for situations where the substrate geometry 
is mold complicated. Therefore in this paper we study the shape of the liquid profile 
within a wetting geometry around a simple substrate inhomogeneity, an infinitely long 
rectangular fissure in an otherwise planar surface. We demonstrate how the groove 
fills sharply, but continuously, with the wetting liquid as the chemical potential and 
temperature are varied. This is in contrast to the situation for an infinitely deep 
groove when the capillary condensation transition is first order (Evans 1990). 

The interface potential we shall employ includes terms resulting from the surface 
tension of the interface, the chemical potential difference between liquid and gas 
and fluid-fluid and fluidsubstrate interactions of the non-retarded van der Waals 
form. It can be derived by minimizing a density functional expression for the grand 
canonical potential within the sharp kink approximation, that is within the subspace 
of piecewise constant density profiles (Dietrich 1988). 

In section 2 we show how the interface free energy can be minimized in Coordi- 
nates appropriate to the slit geometry to give a differential equation for the height 
of the interface above the substrate. This can be solved numerically and the results 
are presented in section 3 as a function of the aspect ratio of the goove and the 
thermodynamic parameters. Comparison is made to a slit of infinite depth in section 
4. Section 5 provides a conclusion in which the results are summarized and related 
to previous work A discussion is given of the validity of the interface potential 
approach. 

2. Interface potential approach for a rectangular groove 

Our aim is to study the profile of the wetting layer in a rectangular groove of finite 
width and depth, but infinite length, embedded in a plane, as shown in figure 1. The 

0305-4470/92/164275+Wso4.50 @ 1992 IOP Publishing Ltd 4215 



4276 

function I, which defines the substrate surface is a step function 

G A DarbeUay and J M Yeomans 

Hence 0 is the slit width and q the ratio of its depth to its width. 

Gas 

U 
Liquid 

Solid 

D 

Flgure 1. Rectangular growe of width D and depth qD. n e  origin is ehosen U, be ai 
ihe ievei of ine piane, ai an q u a i  distance i" each edge oi ine weii. i n e  z and y 
axes tie in the plane perpendicular and parallel to the g m v e  ttspectively. 

The substrate is immersed in a fluid close to two-phase coexistence at a reduced 
temperature t = (T, - T)/T, ,  where T, is the temperature of the bulk critical 
pint. The chemical potential, relative to its value at two-phase coexistence, Ap, 

defined so that the substrate attracts the fluid atoms. Hence a layer of liquid forms 
on the substrate. The Liquid-gas interface can either follow the contours of the well, 
a situation preferred by the chemical potential contribution to the free energy, or 
ignore the well to minimize the interfacial area and the associated surface tension. 
We study the transition between these states as a function of Ap,  t and q. 

from the substrate surface. One can reasonably assume that the interface position 
depends only on the x coordinate, l ( ~ )  s l ( z ) ,  because the system is invariant with 
respect to translations along the y axis (see figure 1). In terms of l ( x )  the interfacial 
free energy per unit length along the slit is taken to be (Dietrich 1988) 

& ~ p n  s ~ p h  thg a"" mr "hire y..W" & prefpirp& scbstrztp-fluid ktprzc!iae & 

we work within the apprQwimation that there is a sharp interface at a distance I(r) 

The first term is the free energy of the interface itself-the surface area of the 
interface multiplied by the liquid-gas surface tension, U.  The second contribution 
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to the free energy results from absorbing a given volume of the thermodynamically 
unfavourable liquid phase. The difference in number densities between the two phases 
has been subsumed into the chemical potential 

Afi = (nl  - n,)Ap. (3) 

The final term models the interatomic interactions. In the case where both fluid- 
fluid and fluid-substrate interaction potentials are of the non-retarded van der Mals  
form, l/r6, this can be written as 

w [ l ( x ) ]  = - dr 'dr ""I ?r gan I substrate I - l 6  (4) 

where A is the Hamaker constant. The integral over the substrate can be carried out 
analytically for a rectangular groove giving 

where 

with 

and 
- ~ 2  - 2 d  - 2v4 

g(u'v)  = u3(u2 + 212)1/2u3 ' 

The last term in equation (6) is clearly due to the presence of the well. For a planar 
substrate, p + 0, V ( x ,  z )  reduces as expected to the potential of a single wall 

Note that we require a positive Hamaker constant to correspond to the case where a 
Liquid layer forms upon the substrate. 

Minimization of the functional (2) with respect to l ( z )  leads to the Euler- 
Lagrange equation 

The Hamaker constant A, the number density difference An = nI - ng, and 
the interfacial tension a all vanish at the critical point. We adopt the customaly 
power-law temperature dependence 

a - a# 
An - An,ta 

A - A @ .  (13) 
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We will take the three-dimensional values for the exponents, p = 1.264 and p = 
0.328 (Fisher and Chen 1985). 

The parameters U,. An, and A ,  are material dependent. For a typical Liquid-gas 
system, sulphur hexafluoride adsorbed on silica, A, - 4 x J, U,  Y 0.05 J m-2 
and An,, N loza m-3 (Moldover 1985). The qualitative behaviour of the differential 
equation (10) is not affected in any radical manner by the choice of the amplitudes 
U, and A n , ,  as we will see below. 

G A DnrbeUay and J M Yeomans 

It is convenient to introduce the scaled variables 

L = l / D  

X E x / D  

The differential equation (10) then becomes 

where we have defined the mefficiens 

cl = A , / ~ ,  o2 
c2 = D A n , / u , .  

The substrate potential is now given by 

V ( X , L ) = - 2  - + -  f X + - , L  - f  x - - , L  (A : [ ( ; ) ( ; )I) 
with 

f ( s , L )  = d s ,  + n) - S ( S %  L ) .  (19) 

The function g(u ,  v )  remains as given in equation (8). 
The profiles L ( X )  of the gas-liquid interface are the solutions of the differen- 

tial equation (16) subject to two boundary conditions. For a planar substrate L is 
independent of X and we require that far away from the cleft 

= 0 ,  [El ,x,>1 

By symmetry a second boundary wndition is 

= 0 .  [El x=, 
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Al l  

Figvre Z Reduced thickness L of the Liquid layer at X = 0 against Ihe chemical 
potential difference A s  for a quare well, q = 1. The abscissa unit is J. lhe 
parameter values are t = 0.005, CI = 3 x c2 = lo2' J-l .  

3. Numerical results 

The first question we want to address is: when will the well fill as coexistence is 
approached? A natural measure of the coverage is the thickness of the liquid film 
in the middle of the well Lo L(X = 0). 'Ib construct the curve L , ( A p )  we 
solved the differential equation (16) with a variable stepsize, fourth-order Rungc- 
Kutta method. For low coverage the ~ r i a b l e  L ( X )  changes rapidly near the edges 
of the well, X = f1/2. It is the necessity of obtaining an accurate profile in this 
treacherous corner region that renders the adaptive stepsize necessary. The general 
procedure is as follows. We fix Lo, and, for a given Ap, calculate a profile that 
satisfies the equation (21). We then tune the parameter Ap until the profile satisfies 
the boundary condition (20). The tuning of Ap for low coverage within the groove 
is quite demanding, while for high coverage it is much quicker. 

We find that the curve L o ( A p ) ,  albeit very steep at the transition from an empty to 
a full slit, is continuous and single-valued. The planar thickness far from the groove, 
which follows immediately from equation (lo), 

_ _  A hmiral .,~.-. restilt nf -_ the. -.- nin".rirz.l ..-_ ..-..-. ralrnlotinn~ fnr the " w e .  I" i o  Qhn- -. in fioiire ..~".-. 7 - 
~ 

varies very little in the crossover region. The thickness of the thin film forming on 
the walls of the well is of order of the planar thickness. If A p  is larger than the 
crossover value, then L rz Lplanar - qD. When A p  --t 0, the expected behaviour 
Lo < t < lo-'. Typical values for the width of 
the siir were 2.5 
a fixed depth to width factor q, the shape of L o ( A p )  depends on the ratio 

P l a n a r  - (Ap)-1j3 is recovered. 
We worked within the interval 

10-8 < ij < j io-? m, Fiji; a faed reduced ieiipraiure i, and 
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where cl and c2 are the coefficienrs appearing in the differential equation (16). The 
larger the ratio c2/c1, the steeper the jump in L , ( A p ) .  The jump becomes less 
pronounced for smaller values of the reduced temperature 2. 

For a k e d  reduced temperature t, and a fixed ratio c2/c1, the jump is sharper 
for a larger q. In the limit q - 00 the change in coverage must become discontinuous 
as confirmed by figure 3. 

G A DarbeUay and J M Eomans 

0 . 5  I 
I I 

Pigum 3. Reduced thickness L of the liquid layer at X=O against the chemical potential 
difference A p  for an infinitely deep gmwe, q - m. The abscissa unit is J. The 
parameter values are t = 0.005,  c1 = 3 x lo-', e2 = IOz3 P'. 

As the position of the jump is well defined, it is possible to mnstruct a phase 
diagram in the ( t , A p )  plane. This is shown in figure 4. The separatrix indicates 
when the liquid condenses in the groove. 

' 5  , I 

I 

Flgum 4 A p  against t phase diagram for capillary mndensation in a square groove. 
q = 1. The ordinate unit is J. The separatrix gives the value. ( i , A p ) ,  at 
which the liquid condensate fills the gmwe. The parameter values are CI = lo-' and 
e2 = 5.5 x loz2 .I-'. 
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In addition, we have investigated the behaviour of Lo as a function of t, rather 
than Ap. We find that the curve L , ( t )  is similar to L , ( A p ) .  As t increases, Lo 
jumps from a low coverage to a high coverage. Again the curve is continuous and 
single-valued. For completeness we have checked how Lo behaves as q is varied, for 
&xed A p  and t. We find that Lo increases linearly as q decreases as expected when 
the interface is bound to the substrate. 

We have also evaluated the free energy 0, given by equation (2) as a function 

back into the free energy functional (2) and used the extended Simpson rule to 
evaluate the integrals. 

The result of the integration is displayed in figure 5, where the free energy per 
unit length of the groove (calculated relative to the background contribution from the 
planar substrate) is plotted against Ap. The groove free energy exhibits a shoulder 
corresponding to the crossover region where the groove fills. At the shoulder its 
derivative, which is a measure of the coverage, undergoes a rapid change. However, 
as far as we can tell from our numerical data, there is no singularity. 

cf &. n, end we &.n.se.ted pmfi!.. that ..t&.f;. the F..!.l.-bg..figc q,s?inn 

I 

11.1 0 . 4  0.6 0 . 8  1 1 . 2  1 . 4  1 .6  1.8 

AP 

?*Grc 5. Frpc cncra per Kit  !eng!!l Of !he S!i! $.3!cL!!:!ed !E!z!iYe '" !hC L E c L O m ~ ~ " ~  e.-."-- 
mntribution from the planar subrrate) as a funclion of the chemical potential difference 
Ap for a square p o w ,  q = 1. ?he abcisEa unil is J and lhe ordinate unit is 

c2 = loz3 J-'. J m-'. The parameter wlues are t = 0.005, c1 = 3 x 

4. An infinitely deep groove 

It is of interest to compare the numerical results presented in section 3 to those for 
an infinitely deep groove, q - cc (Evans 1990). We consider two parallel plates at a 
distance D from each other. When the plates are coated by a liquid film of thickness 
1, the interfacial bee energy per unit area is 

(24) .L  f ,  = 2 5 ( l )  + 2Apl+  20. 

where 
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The equilibrium thickness is given by 

G A Darbellay and J M Eomans 

d VI - +Afi  = 0.  
dl 

When the slit is filled with condensate, the interfacial free energy per unit area is 

f; = AFD. (27) 

Hence the value of A p  at which the transition occurs is 

(28) 

where 1 satisfies equation (26). For a wide slit, where V,(l)  can be approximated by 
the first term in equation (25), (28) reduces to (Derjaguin 1940) 

2 a  
An(D - 31) ’ 

Ap = 

The effect of long-range surface forces is apparent when is compared with the macro- 
swpic IWVIII quat ion ..._ I. r r . . - ~ I _  

obtained hy balancing the surface tension and the chemical potential contributions to 
the free energy. 

The mansition from a system of two plates coated by two separate liquid layers 
and a completely filled slit is first order. This can he evidenced by comparing the 
derivatives of fs and j; at the transition. This is the most striking difference from 
the results for the finite groove presented in section 3 where the filling transition was 
found to he abrupt hut continuous. The value of A p  at which the transition occurs 
is given to within 1% by the modified Kelvin equation (29), for q 2 1. 

5. Discussion 

We have used an interface potential approach to study capillary condensation within 
an infinitely long rectangular groove in an otherwise planar substrate. From the 
results for an infinitely deep groove, section 4, a first-order jump from a low to a 
high coverage, as coexistence is approached, might have been expected. This would 
have been signalled by the Lo against Ap  diagram displaying a loop or capillary 
spinodal (Evans el a1 1986). 

However, our numerical calculations show that the crossover from a low to a 
high adsorption is continuous. The transition becomes discontinuous only in the limit 
q -+ 03. The position of the crossover is well approximated hy the modified Kelvin 
equation for q 2 1. 

Similar results have been obtained by Rohhins el a1 (1991) for a regular array of 
grooves with p < 1, for a parabolic groove (Darhellay, unpublished) and for a corner 
geometry (Cheng and Cole 1990). It is worth pointing out that in a study of capillary 
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condensation between neighbouring spheres (Dobbs el a1 1991) the interfacial poten- 
tial approach did predict a first-order transition giving evidence that the lack of such 
a transition is not an artifact of the method itself. 

The groove is a one-dimensional system. Hence, even if the transition is first 
order it will be rounded by an amount Y e x p ( - o q D 2 / k T )  where aqD2 estimates 
the energy needed to form domain walls between lengths of full and empty slit 
(Privman and Fisher 1983). The rounding we observed did not obey this functional 
k i n .  Iiideed, a inem-fieid iiieoiy is noi expecied io predici iiniie-size rounding. 

The interface potential approach itself, although it is the most flexible possibility 
extant for complicated substrate geometries, must be treated with circumspection. 
Apart from being a mean field approximation based on density functional theory it 
relies on a sharp kink approximation for the interface and the replacing of a non- 
local integral by a local surface tension (Napibrkowski and Dietrich 1992). The latter 
approximation is known to lead to errors in the tails of the density profiles for a 
corner substrate (Napiorkowski et a1 1991). 
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